博客
关于我
聚类分析笔记-K均值matlab算法(一)
阅读量:221 次
发布时间:2019-02-28

本文共 1440 字,大约阅读时间需要 4 分钟。

一:聚类分析的动态聚类算法

聚类分析是一种无监督学习方法,用于将数据点按一定规则分组。常见的动态聚类算法之一是K均值算法(K-means),其思想是通过迭代优化聚类中心,使得每个样本点离其聚类中心的距离平方和最小。

K均值算法的思想

  • 初始聚类中心:随机选取K个样本作为初始聚类中心。
  • 迭代优化
    • 对每个样本点计算其到各个聚类中心的距离。
    • 根据距离将样本点分配到最近的聚类中心。
    • 计算每个聚类中心的新坐标(均值)。
    • 比较当前聚类中心与新聚类中心的差异,若收敛则终止,否则继续迭代。
  • 收敛判断:若聚类中心向量变化小,视为收敛。
  • K均值算法的常用方法

    • K均值算法:适用于已知类别数的情况,效果较好。
    • ISODATA算法(迭代自组织数据分析算法):动态调整类别数,适合未知类别数的情况,常用Matlab实现。

    K均值算法的优点与注意事项

    • 优点
      • 简单易实现。
      • 适用于已知类别数的聚类问题。
      • 计算结果具有几何意义。
    • 注意事项
      • 初始聚类中心的选择会影响结果,需合理选择。
      • 对于高维数据,计算量较大,需注意性能优化。
      • 数据的顺序可能影响聚类结果。

    二:Matlab程序实现示例

    以下是基于K均值算法的Matlab程序实现,用于两类聚类问题:

    function mean = k_means_new% 生成模拟数据num = 100; % 样本总数x1 = rand(1, num) * 5; % 类型1y1 = rand(1, num) * 5;x2 = rand(1, num) * 5 + 3; % 类型2y2 = rand(1, num) * 5 + 3;cities = [x1, y1; x2, y2];% 随机选择初始聚类中心m = round(rand(1, num) * num); % 随机选取一个样本作为聚类中心while true    m2 = round(rand(1, num) * num);    if m ~= m2        break    else        m2    endendu1 = cities(:, m);u2 = cities(:, m2);u_old = [u1, u2];u_new = [u2, u1];while true    diff = u_old ~= u_new    if ~diff        break    end    u_old = u_new;    [c, ~] = min(distances(cities, u_old), 2);    index1 = find(c == 1);    index2 = find(c == 2);    u1 = mean(cities(:, index1), 2);    u2 = mean(cities(:, index2), 2);    u_new = [u1, u2];endmean = u_new;end

    三:实验结果与分析

    通过实验验证,K均值算法在已知类别数的情况下表现良好。随着初始样本数量的增加,聚类精度有所提升。以下是不同初始点数量下的聚类效果对比:

    • 10个初始点:聚类效果较为分散。
    • 20个初始点:聚类效果有所改善,分类准确率提高。
    • 50个初始点:聚类效果更为稳定,分类准确率显著提升。
    • 100个初始点:聚类效果最为理想,分类准确率接近100%。

    实验结果表明,K均值算法在已知类别数的情况下表现出色,适合用于分类问题。

    转载地址:http://sowi.baihongyu.com/

    你可能感兴趣的文章
    ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名
    查看>>
    NHibernate学习[1]
    查看>>
    NHibernate异常:No persister for的解决办法
    查看>>
    NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
    查看>>
    NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
    查看>>
    NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现数据实时delete同步_实际操作04---大数据之Nifi工作笔记0043
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
    查看>>
    NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
    查看>>
    NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>
    NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
    查看>>
    NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
    查看>>
    NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
    查看>>
    NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
    查看>>
    NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
    查看>>
    NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
    查看>>
    NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
    查看>>